
Simple benchmarks for speed and accuracy of rigid body
dynamic simulators

Steven Peters (scpeters), John Hsu (hsu)

ECCOMAS Multibody 2015

Outline
Overview of the Open Source Gazebo Simulator

Robot walking simulation speed

Components of a benchmark

Analysis of simple benchmark

Software details

Future work

Gazebo Simulator: Overview and Purpose
Goal: Best possible substitute for physical robot

Architecture:

Use cases:
	 Design and testing of robot components and control
	 Software testing and verification
	 Competitions

Physics Sensors Interfaces GUI

gazebosim.org

Open Source Physics Engines in Gazebo

Open Dynamics Engine (ODE)

Bullet

Simbody

DART

bitbucket.org/odedevs/ode
Robotics, gaming

github.com/bulletphysics/bullet3
Gaming, animation, Sony, AMD, Google

github.com/simbody/simbody
Biomechanics, Stanford

github.com/dartsim/dart
Robotics, animation, Georgia Tech

http://bitbucket.org/odedevs/ode
http://github.com/bulletphysics/bullet3
http://github.com/simbody/simbody
http://github.com/dartsim/dart

Open Source Physics Engines in Gazebo
Easy to switch between physics engines (gazebo 3.0+)

Command line option:
gazebo -e {bullet|dart|ode|simbody}

Attribute in sdf world file:
<world><physics type=”simbody” />...

gazebo5+ include support for Bullet, ODE, and Simbody
(Dart requires building from source)
from packages.ros.org:
sudo apt-get install ros-jade-gazebo-ros-pkgs

Robotic walking task: speed comparison

https://vimeo.com/105584932

https://vimeo.com/105584932
https://vimeo.com/105584932

Robotic walking task: analysis
Trajectories look similar
Hard to say more without validation

Open Dynamics Engine parameter study
Iterations vs error vs speed

Faster computation

More
accurate

Components of a benchmark
Scenario

Model: 	 	 	 dx/dt = f(x, t)
Initial conditions: 	 	 x(t0)
Expected behavior: 		 y = h(x,t) for t in [t0,tf]

Parameters
May be different for each physics engine
Time step size, number of objects, solver iterations

Performance metrics
Accuracy
Computational speed

Reasons to use simple benchmarks

Make it easier to define accuracy metrics
analytical solutions, conservation laws

Isolate effects of solver parameters
simplifies parameters sensitivity analysis

Simple models
Known solutions

Robot walking
???

Complexity

Boxes: free-floating rigid bodies
Model: boxes 1x4x9

Free-floating
Constant gravity field

Initial conditions:
Largest angular velocity about axis
of size 4 (leads to tumbling)

Expected behavior:
Parabolic trajectory of center of mass (c.m.)
Angular momentum conserved in world frame

https://vimeo.com/105581956

4

9

1

9c.m.

Parameters:
Solver time step size
Number of boxes

https://vimeo.com/105581956
https://vimeo.com/105581956

Analysis: parabolic position error
All using semi-explicit Euler (1st order)
Simbody takes extra half-step to estimate error
Error proportional to time step size:

Accuracy vs. computational time is comparable

Faster computation

More
accurate

M
ore accurate

Faster

Analysis: angular momentum error
Results are similar to parabolic position error

DART not shown since it currently has a bug
I found while running this benchmark
https://github.com/dartsim/dart/issues/424

Faster computation

More
accurate

M
ore accurate

Faster

https://github.com/dartsim/dart/issues/424

Analysis: linear velocity error
Integration scheme should not contribute error
Error is due to floating point rounding errors
Smaller time-step means more floating point
calculations
Usually not dominant source of error

Faster computation

More
accurate

M
ore accurate

Faster

Analysis: computational time
Scaling of computational time with multiple
boxes (1 - 101)

Timestep chosen to give equal accuracy (larger
timestep for simbody)

DART appears to have more super-linear
sensitivity to number of boxes

Faster
Faster

Disabling collision checker helps since it doesn’t
use a broadphase, but only partially

Software components
“Boxes” benchmark written in C++

Model creation (geometry, inertias, initial conditions)
Time-stepping
Computation of performance metrics (full logs not saved by default)

Cmake find_package(gazebo 6) to link against gazebo version 6
GoogleTest runs each parameter option as a separate test case

Full factorial combination of up to 9 parameters at once (that’s too many)
Exports data as junit XML and time-stamped CSV

Documentation (with LaTeX) and plots in iPython notebook
Hosted on Github: helps with collaboration

http://github.com/scpeters/benchmark

http://github.com/scpeters/benchmark

Food for thought

More scenarios with articulation and contact
Software improvements

Ease adding parameters to Gazebo API
Logging and debugging of single test cases
Generic physics API for Gazebo

Future work

Run timing benchmarks on same hardware
Making it easy to reproduce results (compile,
configure, etc)
Online collaboration like github?

OSRF Sponsors

