
Real-time control in ROS and ROS 2.0

Jackie Kay

jackie@osrfoundation.org

Adolfo Rodriguez Tsouroukdissian

adolfo.rodriguez@pal-robotics.com

Table of Contents

A motivating example

Real-time computing

Requirements and best practices

ROS 2 design

Comparison with ROS 1 and ros_control

Demo and results

2

A motivating example

3

A motivating example

4

A motivating example

– Blocks can be composed by other blocks
– Some blocks are subject to real-time constraints

5

A motivating example

– Blocks can be composed by other blocks
– Some blocks are subject to real-time constraints

6

A motivating example

– Blocks can be composed by other blocks
– Some blocks are subject to real-time constraints
– System topology can change at runtime

7

A motivating example

– Blocks can be composed by other blocks
– Some blocks are subject to real-time constraints
– System topology can change at runtime

8

A motivating example

– Blocks can be composed by other blocks
– Some blocks are subject to real-time constraints
– System topology can change at runtime

9

A motivating example

– Blocks can be composed by other blocks
– Some blocks are subject to real-time constraints
– System topology can change at runtime

10

Table of Contents

A motivating example

Real-time computing

Requirements and best practices

ROS 2 design

Comparison with ROS 1 and ros_control

Demo and results

11

– It's about determinism, not performance

– Correct computation delivered at the correct time

– Failure to respond is as bad as a wrong response

Real-time computing

12

Real-time computing

13

Real-time computing

14

Real-time computing

Usefulness of results after missing a deadline?

15

Hard real-time systems
– Missing a deadline is considered a system failure

Overruns may lead to loss of life or financial damage

– Safety- or mission-critical systems
Examples: reactor, aircraft and spacecraft control

Real-time computing

16

Soft real-time systems
– Missing a deadline has a cost, but is not catastrophic

Result becomes less useful after deadline

– Often related to Quality of Service
Examples: audio / video streaming and playback

Real-time computing

17

Firm real-time systems
– Missing a deadline has a cost, but is not catastrophic

Result becomes useless after deadline

– Cost might be interpreted as loss of revenue
Examples: Financial forecasting, robot assembly lines

Real-time computing

18

Why do we care?

– Event response
e.g. parts inspection

– Closed-loop control
e.g. manipulator control

– Added benefit: Reliability, extended uptime
Downtime is unacceptable or too expensive

The above is prevalent in robotics software

Real-time computing

19

Goal of ROS 2
Real-time compatibility, from day one

20

Table of Contents

A motivating example

Real-time computing

Requirements and best practices

ROS 2 design

Comparison with ROS 1 and ros_control

Demo and results

21

Use an OS able to deliver the required determinism

– Linux variants

– Proprietary: e.g. QNX, VxWorks
POSIX compliant, certified to IEC 61508 SIL3 et.al.

Requirements and best practices

OS real-time max latency (μs)

Linux no 104

RT PREEMPT soft 101-102

Xenomai hard 101

22

Prioritize real-time threads
– Use a real-time scheduling policy

Requirements and best practices

23

http://man7.org/linux/man-pages/man7/sched.7.html

Prioritize real-time threads
– Use a real-time scheduling policy

Requirements and best practices

24

http://man7.org/linux/man-pages/man7/sched.7.html

Avoid sources of non-determinism in real-time code

– Memory allocation and management (malloc, new)
Pre-allocate resources in the non real-time path
Real-time safe O(1) allocators exist

– Blocking synchronization primitives (e.g. mutex)
Real-time safe alternatives exist (e.g. lock-free)

– Printing, logging (printf, cout)
Real-time safe alternatives exist

Requirements and best practices

25

Avoid sources of non-determinism in real-time code

– Network access, especially TCP/IP
RTnet stack, real-time friendly protocols like RTPS

– Non real-time device drivers
Real-time drivers exist for some devices

– Accessing the hard disk

– Page faults
Lock address space (mlockall), pre-fault stack

Requirements and best practices

26

http://www.rtnet.org/
https://en.wikipedia.org/wiki/Real-Time_Publish-Subscribe_%28RTPS%29_Protocol
http://www.rtnet.org/

Table of Contents

A motivating example

Real-time computing

Requirements and best practices

ROS 2 design

Comparison with ROS 1 and ros_control

Demo and results

27

ROS2 design - architecture comparison

usercode.cpp

rclcpp

ROS 2 Middleware API

usercode.c usercode.py

rclpyrclc

usercode.cpp

roscpp

UDPROS

usercode.py

rospy

Opensplice FreeRTPS etc.

TCPROS

28

ROS2 design - real-time architecture

Real-time Operating System

usercode.cpp

rclcpp

ROS 2 Middleware API

usercode.c

rclc

Opensplice FreeRTPS etc.

Real-time Operating System

usercode.cpp

roscpp

UDPROS TCPROS

ros_control Orocos

29

– ROS2 allows customization for real-time use-cases
− Memory management
− Synchronization
− Scheduling
are orthogonal to each other, and to node topology

ROS2 design – Modularity

30

Executor

ROS 2 - current implementation

loop until interrupted

initialization non real-time
 preallocate memory
 ...

cleanup non real-time
 deallocate memory
 ...

spin real-time
 rmw_wait(timeout)
 {
 pass conditions to waitset
 wait (in DDS)
 wake-up if timed-out
 }
 do work if it came in

31

– Standard node lifecycle state machine
− Opt-in feature
− Node lifecycle can be managed without knowledge

of internals (black box)

– Best practice from existing frameworks
− microblx
− OpenRTM
− Orocos RTT
− ros_control

ROS2 design – Node lifecycle

32

ROS2 design – Node lifecycle

credit: Geoffrey Biggs et.al.
WIP, design subject to change

33

ROS2 design – Node lifecycle

credit: Geoffrey Biggs et.al.
WIP, design subject to change

34

ROS2 design – Node lifecycle

credit: Geoffrey Biggs et.al.
WIP, design subject to change

35

Benefits of managed lifecycle
– Clear separation of real-time code path

– Greater control of ROS network
− Help ensure correct launch sequence
− Online node restart / replace

– Better monitoring and supervision
− Standard lifecycle → standard tooling

ROS2 design – Node lifecycle

36

ROS2 design – Node composition

37

ROS2 design – Node composition

– Composite node is a black box with well-defined API

– Lifecycle can be stepped in sync for all internal nodes

– Resources can be shared for internal nodes

38

– Inter-process
DDS can deliver soft real-time comms
Customizable QoS, can be tuned for real-time use-case

– Intra-process
Efficient (zero-copy) shared pointer transport

– Same-thread
No need for synchronization primitives. Simple, fast

ROS2 design – Communications

39

– Real-time safety is configurable

– Can configure custom allocation policy that
preallocates resources

– Requires hard limit on number of pubs, subs, services

– Requires messages to be statically sized

ROS 2 – alpha release

40

ROS2 – progress overview

In progress

– Component lifecycle

– Composable components

– Complete intra-process pipeline

Future work

– Pre-allocate dynamic messages

– CI for verifying real-time constraints

– Lock-free multi-threaded executor

41

https://groups.google.com/forum/#!topic/ros-sig-robot-control/uHSPuJIKOKc
https://groups.google.com/forum/#!topic/ros-sig-robot-control/uHSPuJIKOKc

Table of Contents

A motivating example

Real-time computing

Requirements and best practices

ROS 2 design

Comparison with ROS 1 + ros_control

Demo and results

42

Comparison with ROS1 + ros_control

– Real-time safe communications

– Lifecycle management

– Composability

43

Comparison with ROS1 + ros_control

– Real-time safe communications

– Lifecycle management

– Composability

44

Comparison with ROS1 + ros_control

ROS2 equivalent:
− drop non-standard lifecycle / interfaces → gentler learning curve
− smaller codebase → easier to maintain

ROS1 + ros_control:

45

Table of Contents

A motivating example

Real-time computing

Requirements and best practices

ROS 2 design

Comparison with ROS 1 and ros_control

Demo and results

46

non real-time processnon real-time process

real-time process

ROS 2 Real-time Benchmarking: Setup

motor command

sensor feedback

controller simulator

profiling results

teleop logger

user command

47

ROS 2 Real-time Benchmarking: Setup

Configuration
﹣ RT_PREEMPT kernel
﹣ Round robin scheduler (SCHED_RR), thread priority: 98
﹣ malloc_hook: control malloc calls
﹣ getrusage: count pagefaults

Goal
﹣ 1 kHz update loop (1 ms period)
﹣ Less than 3% jitter (30 μs)

Code
﹣ ros2/demos - pendulum_control

48

https://github.com/ros2/demos/tree/master/pendulum_control

ROS 2 Real-time Benchmarking: Memory

Zero runtime allocations

static void * testing_malloc(size_t size, const void * caller) {
 if (running) {
 throw std::runtime_error("Called malloc from real-time context!");
 }
 // ... allocate and return pointer...
}

Zero major pagefaults during runtime

﹣ Some minor pagefaults on the first iteration of the loop, none after
﹣ Conclusion: all required pages allocated before execution starts

49

ROS 2 Real-time Benchmarking: Results

No stress

1,070,650 cycles observed

Latency (ns) % of update rate

Min 1620 0.16%

Max 35094 3.51%

Mean 4567 0.46%

Timeseries Jitter histogram

50

ROS 2 Real-time Benchmarking: Results

Stress applied:

stress --cpu 2 --io 2

Latency (ns) % of update rate

Min 1398 0.14%

Max 258064 25.8%

Mean 3729.11 0.38%

3 instances of overrun observed Jitter histogram

7,345,125 cycles observed

51

– Systems subject to real-time constraints are very
relevant in robotics

– ROS2 will allow user to implement such systems

− with a proper RTOS, and carefully written user code

– Initial results based on ROS2 alpha are encouraging

− inverted pendulum demo

– Design discussions and development are ongoing!

− ROS SIG Next-Generation ROS

− ros2 Github organization

Closing remarks

52

https://groups.google.com/forum/#!forum/ros-sig-ng-ros
https://groups.google.com/forum/#!forum/ros-sig-ng-ros
https://github.com/ros2
https://github.com/ros2

– [Biggs, G.] ROS2 design article on node lifecycle (under review)

– [Bruyninckx, H.] Real Time and Embedded Guide

– [Kay, J.] ROS2 design article on Real-time programming

– [National Instruments] What is a Real-Time Operating System (RTOS)?

– [OMG] OMG RTC Specification

– [ROS Control] ROS Control, an Overview

– [RTT] Orocos RTT component builder's manual

– [RT PREEMPT] Real-Time Linux Wiki

– [Xenomai] Xenomai knowledge base

Selected references

53

http://people.mech.kuleuven.be/~bruyninc/rthowto/
https://github.com/ros2/design/pull/34
http://people.mech.kuleuven.be/~bruyninc/rthowto/
http://people.mech.kuleuven.be/~bruyninc/rthowto/
http://people.mech.kuleuven.be/~bruyninc/rthowto/
http://people.mech.kuleuven.be/~bruyninc/rthowto/
https://github.com/ros2/ros2/wiki/Real-Time-Programming
http://www.ni.com/white-paper/3938/en/
http://www.openrtm.org/OpenRTM-aist/html/OMG.html
https://vimeo.com/107507546
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
https://rt.wiki.kernel.org/index.php/Main_Page
http://xenomai.org/knowledge-base-index

