"Moe" the Autonomous Lawnmower

Auburn University

William Woodall <w@auburn.edu> williamjwoodall.com Michael Carroll <m@auburn.edu> mjcarroll.net

Overview

- Competition Overview
- Overview of "Moe"
- Team History
- Moving from robot_pose_ekf to custom EKF
- Use of move base
- Architecture of path planning
- Edge Cases
- Conclusion

Competition Overview

- Hosted by ION and AFRL
- automow.com
- Dayton, OH
- June 2nd
- Dynamic Competition
- 2010 Third
- 2011 Second
- 2012 First?

Overview of "Moe"

ROS Features:

- App Manager
- ROSOSCTeleoperation
- Full URDF
- Gazebo

Autonomous Lawnmower Capabilities and Features

Power

- · 24 Volt, 64 Amp-hour Main Battery Stack
- On-board 24 Volt power supply (recharge without rebooting)
- · Self-restting fuses to protect electronics

Computing

- · Core i7 Quad @ 2.8GHz
- · 64Gb Solid State Hard Disk
- · Wireless 802.11n Router
- · Ubuntu Linux 10.10
- ROS (Robotics
 Operating System)

Chassis

- · 80/20 © Modular Framing
- · UV Resistent Polycarbonate Panels
- Impact Resistant UHMW Polyethylene
 Overall Length: 1.60 meter (63 inches)

Width: 0.76 meter (30 inches)

Height: 0.86 meter (34 inches)

- · 270°, 11 meter range Laser Range Finder
- · Differential RTK GPS
- · 9 Degrees of Freedom Attitude & Heading Reference System
- · 1000 pulse per rotation wheel encoders
- Microsoft Kinect

Safety & Reliability

- · Button and Remote E-stop
- · E-stop blade lockout (start on powerup prevention)
- · Cutter blade stoppage in 0.5 seconds
- · Independently fused sensors, motors, and cutters

Cutting

- · Top Speed: 6.6 km/hr (6 ft/s)
- · Cutting Speed: 1.6 km/hr (1.5 ft/s)
- · Cutting Deck Width: 28 inches
- · Cutting Area: Up to 6,000 ft² per charge
- · Battery Life: 1.5 hours in light grass
 - 1 hours in thick grass
- Charge Time: 2 hours quick charge
 6 hours full charge

Economics

- · Retail Cost: \$18,800.00
- · Team Cost: \$8,572.25

Department of Electrical and Computer Engineering

Team History

- 2010:
 - 9 Mechanical
 - 7 Electrical
 - o 2 Software
- 2011:
 - 1 Electrical
 - 2 Software
- 2012:
 - 1 Electrical
 - 1 Software

Reasons for Custom EKF

- "Tighter" integration of raw messages
 - Wheel encoders used directly in model
- Zero-velocity updates
- Using lawnmower specific heuristics
 - Monitor GPS covariance and fix type
 - Monitor cutting blade status, as they affect the magnetometers in the AHRS
- Remove the "black-box" effect
- Learning Experience

Result of Custom EKF

- Better Solution for the Lawnmower
- Tighter control over resulting solution
- ROS interfaces provide sufficient decoupling to easily drop-in replace the filter into the system

Move Base

- Great General Solution
- Point A to B without hitting things
- Coverage Planning
- Another "black-box"
- Frustrations from tuning with noise from GPS

Coverage Path Planning with Move Base

A to B != Coverage

Custom global/local planner or feed move

base waypoints?

 What's the best way to combine coverage and obstacle avoidance?

Edge Cases

- Most valuable grass is near obstacles
- Move Base is difficult to predict in tight maneuvers
- Scheduled
 Controllers
 - Move Base for general navigation
 - Specialized local controller for edging obstacles

Conclusion

- ROS provides great general solutions to common problems
- Those solutions can sometimes be configured to be good enough for domain specific tasks, but can also structe.
- ROS grew with the team
- Autonomous Lawnmowers are awesome

