
The next (big) step
for the ROS middleware
May 12, 2013
Dirk Thomas
ROSCon 2013



Why "ROS 2.0"?

ROS is great and successful...
... but there is still room for improvement.
● Implemented "everything" from scratch
● Unreliable transport with silent failures
● Non-deterministic start-up behavior
● Separate API for nodes/nodelets
● Limited support for multi-robot
● Limited introspection capability

And much more...



Goals

● Reuse existing libraries / less maintenance
● Modular interfaces / separation of concerns
● Better extensibility
● Enable introspection / debugging / dynamic system         

response
● Reconnectivity on network changes
● "Verifiable" configuration
● Support demands of "new" domains better:

- Multi-robot - Web interfaces

- Embedded systems - Usable for products



Why "ROS 2.0" instead of 1.X+1?

Why decide between writing a node or nodelet 
at programming time?
● Should have the same API, decision at start time
● Which one to change (breaking the other)?

- if possible, provide backward compatible API
  relaying to new API

Why do we need two wire protocols?
● XMLRPC to talk to master and negotiate with nodes
● TCPROS for all other connections



Why "ROS 2.0" instead of 1.X+1?

Want a deterministic start-up behavior?
● Currently, nodes implementing a custom main function 

will not comply

Why do we rely on a single master?
● Could it be fully distributed or have multiple masters?



ROS 2.0

ROS 2.0 is a codename describing the numerous efforts.

A lot of these require significant API changes – deploying 
them iteratively in current ROS would be a significant
(if not impossible) overhead.

A separated API will:
● Keep the existing API much more stable
● Enable a cleaner design/development process
● Still allow writing a backward compatibility layer on-top



Approach

● Design abstract protocols and interfaces between 
layers

● Reuse off-the-shelf libraries; make them pluggable
- msgpack / protobuf
- zeromq / amqp
- zeroconf / avahi

● Breaking API if necessary 
(instead of incremental changes)
- but communication is possible with "ROS 1.0" ecosystems

- consider scripts to make a potential upgrade path easier



A lot of affected subsystems

● Modularity points
- exchangeable msg spec / serialization / transport / compression

● Required capabilities of core systems 
to support existing concepts
- topics / services / actions
- parameters / dynamic reconfigure
- nodelets

● Network level communication
- Discovery and negotiation
- Topology

● Configuration space
- build time vs. deploy time vs. run time



Up to now

● Bottom-up approach 
- Buildsystem in Groovy was the first step

- Build infrastructure in Hydro the second 
● Prototyping

- Component-based life cycle, dyn. start/reconfigure/stop of comp.
- Introspectable components including parameters, callbacks, etc.

(see DARC - distributed asynchronous reactive components)

● Working on the process to
- Collect use cases (will be classified: 
      must-have, nice-to-have, not-being-implemented, out-of-scope)
- Extract requirements
- Derive design decisions

https://github.com/mkjaergaard/darc


Next Steps

Continue and announce the process and open it to the 
community to collect more use cases and derive design 
requirements from them.

Based on that:
Derive high-level system architecture

- Write design documents to make decisions comprehensible
- The design documentation should exhibit traceability

- Users should be able to trace design requirements 
   back to design decisions and back to the use cases 
   which drove those design decisions



Outlook
Stage 1
• Use cases Elicitation
• Derive requirements

Stage 2
• Conceptual design
• Whiteboarding
• Technology research

Stage 3
• System design formalized
• Backed by partial prototypes

Alpha release in the first half of 2014.
Stable release in the second half of 2014 (side-by-side with "ROS 1.0").



Questions?
Feedback?

or even better...
Use Cases!
Requirements!


