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Why "ROS 2.0"?

ROS is great and successful...
... but there is still room for improvement.
● Implemented "everything" from scratch
● Unreliable transport with silent failures
● Non-deterministic start-up behavior
● Separate API for nodes/nodelets
● Limited support for multi-robot
● Limited introspection capability

And much more...



Goals

● Reuse existing libraries / less maintenance
● Modular interfaces / separation of concerns
● Better extensibility
● Enable introspection / debugging / dynamic system         

response
● Reconnectivity on network changes
● "Verifiable" configuration
● Support demands of "new" domains better:

- Multi-robot - Web interfaces

- Embedded systems - Usable for products



Why "ROS 2.0" instead of 1.X+1?

Why decide between writing a node or nodelet 
at programming time?
● Should have the same API, decision at start time
● Which one to change (breaking the other)?

- if possible, provide backward compatible API
  relaying to new API

Why do we need two wire protocols?
● XMLRPC to talk to master and negotiate with nodes
● TCPROS for all other connections



Why "ROS 2.0" instead of 1.X+1?

Want a deterministic start-up behavior?
● Currently, nodes implementing a custom main function 

will not comply

Why do we rely on a single master?
● Could it be fully distributed or have multiple masters?



ROS 2.0

ROS 2.0 is a codename describing the numerous efforts.

A lot of these require significant API changes – deploying 
them iteratively in current ROS would be a significant
(if not impossible) overhead.

A separated API will:
● Keep the existing API much more stable
● Enable a cleaner design/development process
● Still allow writing a backward compatibility layer on-top



Approach

● Design abstract protocols and interfaces between 
layers

● Reuse off-the-shelf libraries; make them pluggable
- msgpack / protobuf
- zeromq / amqp
- zeroconf / avahi

● Breaking API if necessary 
(instead of incremental changes)
- but communication is possible with "ROS 1.0" ecosystems

- consider scripts to make a potential upgrade path easier



A lot of affected subsystems

● Modularity points
- exchangeable msg spec / serialization / transport / compression

● Required capabilities of core systems 
to support existing concepts
- topics / services / actions
- parameters / dynamic reconfigure
- nodelets

● Network level communication
- Discovery and negotiation
- Topology

● Configuration space
- build time vs. deploy time vs. run time



Up to now

● Bottom-up approach 
- Buildsystem in Groovy was the first step

- Build infrastructure in Hydro the second 
● Prototyping

- Component-based life cycle, dyn. start/reconfigure/stop of comp.
- Introspectable components including parameters, callbacks, etc.

(see DARC - distributed asynchronous reactive components)

● Working on the process to
- Collect use cases (will be classified: 
      must-have, nice-to-have, not-being-implemented, out-of-scope)
- Extract requirements
- Derive design decisions

https://github.com/mkjaergaard/darc


Next Steps

Continue and announce the process and open it to the 
community to collect more use cases and derive design 
requirements from them.

Based on that:
Derive high-level system architecture

- Write design documents to make decisions comprehensible
- The design documentation should exhibit traceability

- Users should be able to trace design requirements 
   back to design decisions and back to the use cases 
   which drove those design decisions



Outlook
Stage 1
• Use cases Elicitation
• Derive requirements

Stage 2
• Conceptual design
• Whiteboarding
• Technology research

Stage 3
• System design formalized
• Backed by partial prototypes

Alpha release in the first half of 2014.
Stable release in the second half of 2014 (side-by-side with "ROS 1.0").



Questions?
Feedback?

or even better...
Use Cases!
Requirements!


